
Design of Combinatorial APS Pixel Addressing
Circuitry using the Sky130 Process Design Kit

Carolina Vieira Souza
Faculdade de Engenharia

Universidade Federal de Juiz de Fora
Juiz de Fora, Brazil

carolina.vieira@engenharia.ufjf.br

Guilherme Ferrara Jorge Pereira
Faculdade de Engenharia

Universidade Federal de Juiz de Fora
Juiz de Fora, Brazil

guilherme.pereira2020@engenharia.ufjf.br

Estêvão Coelho Teixeira
Faculdade de Engenharia

Universidade Federal de Juiz de Fora
Juiz de Fora, Brazil

estevao.teixeira@ufjf.br

Abstract—Currently, CMOS imagers are found in a plethora
of applications, ranging from digital cameras in cell phones to
security applications. The Active Pixel Sensor (APS) is the core
of the CMOS imagers, consisting of a photosensitive element and
three or more transistors that implement a readout circuit. Each
pixel of the APS can be accessed and read by a combination of
generated digital signals for Reset and Pixel Selection. This work
carries out the design of digital combinatorial circuitry, composed
by two decoders, used for addressing and reading an APS matrix,
using the open Sky130 Process Design Kit (PDK). The circuits
are described, in the context of the proposed matrix, and the
open source tools used for the design are explained. Finally, the
generated blocks layouts and simulation results are presented.

Index Terms—APS, digital design, OpenLane, open PDK,
Sky130, open source tools.

I. INTRODUCTION

CMOS imagers based on Active Pixel Sensor (APS) tech-
nology became commonly used since its launching in the
1990s [1]. These devices capture the luminosity onto them
and create images based on the principle of photocurrent.
Operating based on this principle, photons are integrated
into a reverse-biased p-n junction. Digital cameras have be-
come easily accessible and are integrated into notebooks, cell
phones, tablets, and security systems. The aforementioned
characteristics have made CMOS sensors attractive for these
applications, due to the posibility of integrating the sensors
and all the readout electronics into a same integrating circuit,
leading to the concept of ”camera on chip” [2].

According to [2], the basic APS pixel is consisted of a
photosensitive element (usually a photodiode) and a readout
circuit, consisted by at less three transistors (the 3T pixel): a
Reset transistor, a readout transistor (which acts as a buffer
and a charge amplifier) and a selection transistor, which ties
the selected pixel to the column biased by a current source,
composing a source follower configuration that that undergoes
a process of reading or analog signal processing.

In addition to the pixel array itself and the readout and
signal processing circuitry, the APS imager is also composed
by a row and column selection logic, implemented through
digital combinatorial pixel selection circuits composed of two

decoders that address a particular pixel, or a group of pixels
at the same line, depending upon the configuration adopted.
This highlights another interesting feature of the APS: the
possibility of readout of an individual pixel, or an area of
pixel, instead of the entire matrix.

The release of the SkyWater Open Source Process Design
Kit (PDK) in 2020 enabled undergraduate students to access
chip design without restrictions like non-disclosure agreements
(NDAs). With the use of free and open source tools, digital,
analog and mixed-signal circuits can be designed using the
process called Sky130, a mature CMOS process using the
hybrid 180nm-130nm, 1.8-Volt technology node [3].

This paper presents the design of two selection circuits using
the Sky130 PDK. The open source tool OpenLane, suited for
the PDK, was used, which is a platform supporting other open
source tools, integrating various stages of the silicon imple-
mentation process into a process flow; converting a digital
design described in Verilog, along with configuration files
into an integrated circuit layout database file format (GDSII).
Other open source tools were used for layout verification and
simulation of results.

The work is organized as follows: in Section II, the decoders
used in the pixel selection matrix are explained in the context
of the APS. Section III describes how OpenLane was used
and operated to achieve the final result, along with some
preliminary simulations. In Section IV, the verifications and
simulations of the obtained results are shown, along with the
tools used for this purpose. Finally, conclusions are presented
in Section V.

II. DECODERS

Decoders are logic circuits that receive a set of input signals
representing a binary number and usually activate only one
output, corresponding to the received number [4]. Typically,
the maximum number of outputs is 2n (where n is the number
of inputs). Their importance is reflected in their widespread
use in digital designs, ranging from precise memory selection
to flawless code conversion (such as binary to decimal) and
efficient data routing.



Fig. 1: Block diagram of the APS matrix.

This work presents the development of two CMOS decoders
for addressing a 128x128 APS matrix. It is important to
contextualize the design of the decoders within the overall
project. Given that the current stage of the project aims
to enable individual access to pixels and read the analog
signal for characterizing the pixels in Sky130 technology,
the imager was designed in a simplistic manner, devoid of
signal processing stages and analog-to-digital converters. The
digital circuitry is also planned for a simple operation, without
sequential circuits for pixel addressing.

A block diagram illustrating the imager structure is shown
in Fig. 1, showing both the digital and analog signals paths.
The 128x128 matrix is divided into eight blocks of 128 lines
and 16 columns. Indeed, eight pixel outputs can be read in
parallel. This arrangement requires two decoders, one with
seven inputs and 128 outputs, and another with four inputs
and duplicated 16 outputs.

The row addressing logic is implemented by a 7x128
decoder, structured through the cascading of smaller decoders.
It operates as follows: in the same row, there is a bus that
enables all its pixels through a row selection transistor present
in each pixel, with a HIGH logic signal at the decoder output.
The seven input lines of the decoder are provided externally.

Another decoder, smaller than the row decoder, is required
in order to address one of the 16 columns of each block, which
will be done by an analog multiplexer, out of the scope of this
paper. This decoder is also responsible for generating the Reset
signals, which are brief signals common to all the pixels of a
same column, applied to the Reset transistor of each column
pixel. Therefore, a 4x32 decoder is needed, where the last 16
outputs will be the same as the first 16, but only activated
when an Enable input is put into at a HIGH logic level. The

four inputs will be externally accessible, as well as the Enable
signal, which will receive an external pixel Reset signal. Due
to this logic, only the pixels of the addressed columns will be
reset.

III. THE OPENLANE 1

The OpenLane 1 is configured as a robust open source
system that facilitates the construction of physical implemen-
tation flows for digital application-specific integrated circuits
(ASICs) [5]. This platform combines open source Electronic
Design Automation (EDA) tools with advanced features to
automate the design process. As described in [6], the tool
offers a complete flow that ranges from register-transfer level
(RTL) representation to the generation of the GDSII format
used for chip manufacturing. Some benefits to mention include
the possibility of having free and open source software (FOSS)
that can be as efficient as commercial ones. One of the main
advantages of OpenLane is its flexibility, allowing the design
flow to be customized to meet the specific needs of each
project by simply configuring its config.json input file.

In the context of VLSI design, a macro is a block that im-
plements a function to be integrated into the chip, simplifying
the design process, enabling its reuse, and increasing reliability
since they can be tested separately [7]. Hardening a design
macro is a process that can be executed by OpenLane1 start-
ing from a Hardware Description Language (HDL) Verilog,
resulting in the manufacturable layout file of the chip (GDSII
format).

The flow of the OpenLane environment primarily uses tools
such as OpenRoad [8], Yosys [9], and Open Circuit Design
[10], and operates as follows: Yosys synthesizes the design into
a gate-level netlist, and OpenSTA [11] performs static timing
analysis, verifying that the design does not have setup and
hold violations. Next, Design For Testability is executed by
inserting scan chains and IO ports for post-fabrication testing.
Then, floorplanning and placement are executed, where the
user can make changes through a configuration file, as well
as the positioning of the I/O pins. Every time a tool alters the
netlist, a Logic Equivalence Check (LEC) is performed using
Yosys, ensuring it maintains the same logic and functionality.
Optimization scripts and global routing are then performed
[12].

Finally, Design Rule Checking (DRC) and Layout versus
Schematics (LVS) are executed by Magic, generating GDSII
and LEF files used to implement the created macro into a
larger design. In Fig. 2, the complete project flow is described.

A. Design example

For the design of the decoders, it was necessary, in the case
of the row decoder, to meet some physical properties, since it
will be directly connected to the pixels of each row. Therefore,
each output pin should have a distance of 15 µm, which will
be planned pixel pitch. Through the configuration file of the
flow (config.json), PDK support configuration files, and by
analyzing the documentation [13], the following configuration
was made. The configurations were implemented as follows:



Fig. 2: OpenLane flow.

Fig. 3: Row Decoder IVerilog simulation.

• ”FP SIZING”: ”absolute”, ensuring that the area of the
decoder is precisely established;

• ”DIE AREA”:”0.0 0.0 2000.0 100.0”, specifying this
area to have a length of 2000µm and fit alongside the
pixel array;

• ”FP IO MODE”:false, ensuring that the allocation of
the I/O pins is not done automatically, along with
”FP PIN ORDER CFG”, establishing an auxiliary con-
figuration file “pin order.cfg”, in which the input and
output pins can be ordered in specific directions;

• ”RT MAX LAYER”: allowing the highest layer to be
used in the routing process. In this case, the maximum
layer defined is ”met4”. This means that OpenLane will
have access to all metal layers up to ”met4” to make the
interconnections between the project components.

IV. VERIFICATION AND SIMULATION

Before running the OpenLane1 flow, the hardware devel-
oped in Verilog must be verified. For this, the tool Icarus
Verilog [14], suited for the Sky130 PDK, was used. It is
a Verilog HDL compiler, as described in the IEEE-1364
Standard [15]. Therefore, after creating the design, a testbench

Fig. 4: Column Decoder IVerilog simulation.

(a) Full decoder. (b) Detail.

Fig. 5: Row Selection decoder layout.

file was created to evaluate if the created logic corresponds to
the expected behavior. This way, it was observed that both
decoders operated as expected, responding to the input signal
and enabling only one output. In Fig. 3, it can be observed,
besides the input signals, the first 18 and last 18 outputs of the
row decoder. The other outputs were omitted for the purpose
of simplifying visualization.

In the case of the column decoder, the testbench was
designed to simulate the operation of the reset signal in
the APS, where the ’enable’ signal, which enables half of
the outputs, has a period lower than the period of the least
significant input bit (LSB) of the decoder. This results in an
output with a shorter period than the outputs that are not
affected by this control signal, as seen in Fig. 4. Here, only for
didactic purposes, the period of Enable is half of the period os
the LSB. The figure shows, in sequence, the Enable (Reset)
signal, the four input bits, the 16 Reset signals and the 16
Column Select signals.



Fig. 6: Column Selection decoder layout.

After obtaining the integrated circuit layout (GDSII file)
through the OpenLane flow, the tool Klayout [16], compatible
with the PDK, was used. It is a viewer and editor of GDSII
layouts. It allowed to check that the specifications were met,
such as the distance between the output pins (15 µm), size,
and number of metal layers.

The visualization of the generated layouts is depicted in
Fig. 5 and Fig. 6. The obtained areas of the row selection
decoder and the column selection decoder are, respectively,
200000µm2 (0.2mm2) and 3997.3µm2 (∼ 0.004mm2).

V. CONCLUSION

This paper presented the design of two decoders in the
Sky130 technology, conceived in order to address a 128x128
APS Matrix. According to the planned readout scheme, it
was necessary a 7x128 decoder for row selection, while a
4x(16+16) decoder was designed both for column selecion and
for Reset of the pixels of a given group of columns. The open
source tools used were suited for use with the open Sky130
PDK.

The constraints for the design of the row decoder (with
specific physical dimensions) were described in the text. The
layouts of the decoders were shown, as well as pre-layout
simulation results.

In this case, both of the designed circuits are purely com-
binatorial, given the simplified purpose of pixel testing for
the matrix. However, the tools have proven to be useful in
the design of more complex circuits, which incorporate both
combinatorial and sequential features.

This project demonstrates that open source tools are viable
and effective for novice designers, including undergraduate
students and independent users. These tools lead to satisfactory
results even in complex projects. Additionally, the open PDK
associated with open source tools can contribute to democra-
tizing integrated circuit design.

VI. ACKNOWLEDGMENT

This work was supported by an Academic Professional
Training Program (TPA 2023/2024), by the PROGRAD/UFJF.

REFERENCES

[1] E. R. Fossum, “CMOS Image Sensors: Electronic Camera on a Chip”,
IEEE Transactions on Electron Devices, v. 44, n. 10, pp. 1689-1698,
Oct. 1997.

[2] E. R. Fossum. “Digital Camera System on a Chip”, IEEE Micro, pp.
8-15, May-Jun. 1998.

[3] Skywater Open Source PDK. Available at:
https://github.com/google/skywater-pdk (access May 31, 2024).

[4] D. M. Harris and S. L. Harris, Digital Design and Computer Architec-
ture. Morgan Kaufmann, 2nd edition, 2012.

[5] M. Shalan and T. Edwards, ”Building OpenLANE: A 130nm
OpenROAD-based Tapeout- Proven Flow : Invited Paper”. In: 2020
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD), San Diego, CA, USA, 2020, pp. 1-6.

[6] ”OpenLane documentation” Available at:
https://openlane.readthedocs.io/en/latest/ (accessed May 31, 2024).

[7] S. A. Maurya, Structured design methodology for high performance
VLSI arrays. Avaiable at : https://core.ac.uk/download/pdf/79563898.pdf
(accessed May 31, 2024).

[8] The OpenROAD project – foundations and realization of open and
accessible design. Avaiable at: https://theopenroadproject.org (accessed
May 31, 2024).

[9] yosys: Yosys Open SYnthesis Suite. [s.l: s.n.]. Available at:
https://yosyshq.net/yosys/ (accessed in May 31,2024).

[10] Open Circuit Design. Avaiable at: http://opencircuitdesign.com (ac-
cessed in May 31, 2024).

[11] OpenSTA: OpenSTA engine. Avaiable at: https://github.com/The-
OpenROAD-Project/OpenSTA (accessed in May 31, 2024).

[12] A. A. Ghazy and M. Shalan, ”OpenLANE: the open-source digital
ASIC implementation flow”. Proceedings of the Workshop on Open-
Source EDA Technology - WOSET 2020. Virtual, 2020. Available in::
https://woset-workshop.github.io/PDFs/2020/a21.pdf (accessed in May
30, 2024).

[13] OpenLane’s Flow Configuration Variables. Avail-
able at: https://github.com/The-OpenROAD-
Project/OpenLane/blob/master/docs/source/reference/configuration.md
(accessed in May 31, 2024).

[14] S. Williams, Iverilog: Icarus verilog. Available at:
https://github.com/steveicarus/iverilog (accessed in May 31, 2024).

[15] Institute of Electrical and Electronics Engineers, ”IEEE Standard
for Verilog Hardware Description Language”. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), pp.1-590, April 7, 2006, doi:
10.1109/IEEESTD.2006.99495.

[16] M. Koefferlein, KLayout Layout Viewer And Editor. Available at:
https://www.klayout.de/intro.html (accessed in May 31, 2024).


